## Q1.

The equation for the complete combustion of butane is

$$C_4H_{10} + 6\frac{1}{2} \ O_2 \rightarrow 4 \ CO_2 + 5 \ H_2O$$

What is the mole fraction of butane in a mixture of butane and oxygen with the minimum amount of oxygen needed for complete combustion?

**A** 0.133

0

**B** 0.153

0

**C** 0.167

0

**D** 0.200

0

(Total 1 mark)

|   | 1 |  |
|---|---|--|
| W | Z |  |

This question is about some gas mixtures at equilibrium.

This reaction can be used to make hydrogen.

The amount increases.

$$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$$
  $\Delta H = -41 \text{ kJ mol}^{-1}$ 

(a) A mixture of 2.00 mol of  $H_2O(g)$  and 2.00 mol of CO(g) is allowed to reach equilibrium at a constant temperature in a 20 dm<sup>3</sup> container. At equilibrium, there are 0.92 mol of  $H_2(g)$ .

Calculate the mole fraction of  $H_2(g)$  in the equilibrium mixture.

| Mole Irac                                                              | ction of H <sub>2</sub> (g)             |
|------------------------------------------------------------------------|-----------------------------------------|
| State why the equilibrium constant (                                   | $(K_p)$ for this reaction has no units. |
|                                                                        |                                         |
|                                                                        |                                         |
|                                                                        |                                         |
| The temperature of the equilibrium r                                   | mixture formed in part (a) is increased |
| How does the amount of H <sub>2</sub> (g) chan equilibrium is reached? | ge when the new position of             |
| Tick (✓) <b>one</b> box.                                               |                                         |
| The amount decreases.                                                  |                                         |
| The amount does not change.                                            |                                         |
|                                                                        |                                         |

(2)

(1)

(Total 9 marks)

Ethanol can be made from ethene and steam.

$$C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$$
  $\Delta H = -45 \text{ kJ mol}^{-1}$ 

The table below shows the mole fractions of each of the gases in an equilibrium mixture at 6000 kPa

| Gas     | Mole fraction |
|---------|---------------|
| Ethene  | 0.645         |
| Steam   | 0.323         |
| Ethanol | 0.0321        |

|  | (d) | ) Give an ex | pression for | K <sub>p</sub> for | this | reactio |
|--|-----|--------------|--------------|--------------------|------|---------|
|--|-----|--------------|--------------|--------------------|------|---------|

Calculate the value of  $K_{\text{p}}$  at 6000 kPa

State the units.

 $K_p$ 

|     | Units                                                                                                                                  | _<br>(4) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|----------|
| (e) | State the effect, if any, of an increase in volume of the container on the value of $K_p$ for this reaction at a constant temperature. |          |
|     |                                                                                                                                        | (1)      |

| 4 | $\neg$ | 2 |  |
|---|--------|---|--|
| • | J      | J |  |

Nitrogen dioxide decomposes at a high temperature.

2 NO<sub>2</sub>(g) 
$$\rightleftharpoons$$
 2 NO(g) + O<sub>2</sub>(g)  $\Delta H = +113 \text{ kJ mol}^{-1}$ 

(a) A 0.317 mol sample of nitrogen dioxide is placed in a sealed flask and heated at a constant temperature until equilibrium is reached.

At equilibrium, the flask contains 0.120 mol of oxygen.

Calculate the mole fraction of each substance at equilibrium.

| Mole fraction of NO             |       |
|---------------------------------|-------|
| Mole fraction of O <sub>2</sub> | - (3) |

(b) The total pressure in the flask in part (a) is 120 kPa at equilibrium.

Calculate the partial pressure, in kPa, of NO<sub>2</sub>

If you were unable to answer part (a) you should assume that the mole fraction of  $NO_2$  is 0.380. This is **not** the correct answer.

Partial pressure \_\_\_\_\_ kPa

(1)

(2)

(c) The table below shows the mole fractions of the three gases in a different equilibrium mixture.

$$2 \text{ NO}_2(g) \rightleftharpoons 2 \text{ NO}(g) + O_2(g)$$
  $\Delta H = +113 \text{ kJ mol}^{-1}$ 

| Gas             | Mole fraction |
|-----------------|---------------|
| NO <sub>2</sub> | 0.310         |
| NO              | 0.460         |
| O <sub>2</sub>  | 0.230         |

For this equilibrium mixture,  $K_p = 59.7 \text{ kPa}$ 

Give an expression for  $K_p$  for this reaction.

Use your expression and the data in the table to calculate the total pressure, in kPa, in the flask.

 $\boldsymbol{K}_{\!p}$ 

|     | Total pressure kPa                                                                                                       |     |
|-----|--------------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                          | (3) |
| (d) | The equilibrium mixture in part (c) is compressed into a smaller volume.                                                 |     |
|     | Deduce the effect, if any, of this change on the equilibrium yield of oxygen and on the value of $\textit{K}_{\text{p}}$ |     |
|     | Effect on yield of oxygen                                                                                                |     |
|     | Effect on $K_p$                                                                                                          |     |

| (e) | The equilibrium mixture in part (c) is allowed to reach equilibrium at a lower temperature. |       |
|-----|---------------------------------------------------------------------------------------------|-------|
|     | Explain why the equilibrium yield of oxygen decreases.                                      |       |
|     |                                                                                             |       |
|     |                                                                                             |       |
|     |                                                                                             |       |
|     |                                                                                             | (2)   |
|     | (Total 11 m                                                                                 | arks) |

| <b>W4</b> | ٠, |
|-----------|----|

This question is about equilibria.

| Feature 1                     |                                                                                                                                          |         |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                               |                                                                                                                                          |         |
| Feature 2 _                   |                                                                                                                                          |         |
|                               | reaction is at equilibrium.<br>essure is increased the yield of product decreases.                                                       |         |
| State what ca<br>equilibrium. | an be deduced about the chemical equation for this                                                                                       |         |
|                               |                                                                                                                                          |         |
| Carbon mond                   | oxide and hydrogen react to form methanol.                                                                                               |         |
|                               | $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$                                                                                           |         |
| At equilibrium                | carbon monoxide is mixed with 0.860 mol of hydrogen.<br>n, the total pressure in the flask is 250 kPa and the mix<br>I0 mol of methanol. |         |
| Calculate the                 | amount, in moles, of carbon monoxide present at equi                                                                                     | librium |
| Calculate the equilibrium m   | e partial pressure, in kPa, of carbon monoxide in this nixture.                                                                          |         |
|                               |                                                                                                                                          |         |
|                               |                                                                                                                                          |         |
|                               |                                                                                                                                          |         |
|                               |                                                                                                                                          |         |
|                               | Amount of carbon monoxide                                                                                                                | mo      |
|                               | Partial pressure                                                                                                                         | kPa     |

(d) Give an expression for the equilibrium constant  $(K_p)$  for this reaction.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

(1)

(e) A different mixture of carbon monoxide and hydrogen is left to reach equilibrium at a temperature T.

Some data for this equilibrium are shown in the table below.

| Partial pressure of CO    | 125 kPa                                      |
|---------------------------|----------------------------------------------|
| Partial pressure of CH₃OH | 5.45 kPa                                     |
| <b>K</b> p                | 1.15 x 10 <sup>-6</sup><br>kPa <sup>-2</sup> |

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

Calculate the partial pressure, in kPa, of hydrogen in this equilibrium mixture.

Partial pressure \_\_\_\_\_ kPa

(3)

| (f) | Use the $K_p$ value from the table above to calculate a value for $K_p$ for the |
|-----|---------------------------------------------------------------------------------|
| . , | following reaction at temperature <i>T</i> .                                    |

$$CH_3OH(g) \rightleftharpoons CO(g) + 2H_2(g)$$

| <b>K</b> <sub>p</sub> |                  |
|-----------------------|------------------|
| Units                 |                  |
|                       | (2)              |
|                       | (Total 12 marks) |